lower semimodular lattice - ορισμός. Τι είναι το lower semimodular lattice
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι lower semimodular lattice - ορισμός

PARTIALLY ORDERED SET IN WHICH EVERY NONEMPTY FINITE SET HAS A LEAST UPPER BOUND OR IN WHICH EVERY NONEMPTY FINITE SET HAS A GREATEST LOWER BOUND
Upper semi-lattice; Join-semilattice; Meet-semilattice; Meet semilattice; Join semilattice; Semi-lattice; Semilattices; Upper semilattice; Lower semilattice; Subsemilattice; Lower semi-lattice; Join semi-lattice; Meet semi-lattice; Upper-semilattice

Lattice QCD         
QUANTUM CHROMODYNAMICS ON A LATTICE
QCD lattice model; Lattice qcd; Lattice quantum chromodynamics; Lattice Quantum Chromodynamics; Lattice chromodynamics; LQCD
Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time.
Bravais lattice         
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Monoclinic, centered
  • Cubic, body-centered
  • Cubic, face-centered
  • Cubic, simple
  • Hexagonal
  • Monoclinic, simple
  • Orthorhombic, base-centered
  • Orthorhombic, body-centered
  • Orthorhombic, face-centered
  • Orthorhombic, simple
  • Rhombohedral
  • Tetragonal, body-centered
  • Tetragonal, simple
  • Triclinic
AN INFINITE ARRAY OF DISCRETE POINTS IN THREE DIMENSIONAL SPACE GENERATED BY A SET OF DISCRETE TRANSLATION OPERATIONS
Crystal lattice; Bravais lattices; Bravais Lattices; Crystalline lattice; Space lattice; Crystallographic lattice; Bravais flock; Crystal lattices
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
crystal lattice         
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Monoclinic, centered
  • Cubic, body-centered
  • Cubic, face-centered
  • Cubic, simple
  • Hexagonal
  • Monoclinic, simple
  • Orthorhombic, base-centered
  • Orthorhombic, body-centered
  • Orthorhombic, face-centered
  • Orthorhombic, simple
  • Rhombohedral
  • Tetragonal, body-centered
  • Tetragonal, simple
  • Triclinic
AN INFINITE ARRAY OF DISCRETE POINTS IN THREE DIMENSIONAL SPACE GENERATED BY A SET OF DISCRETE TRANSLATION OPERATIONS
Crystal lattice; Bravais lattices; Bravais Lattices; Crystalline lattice; Space lattice; Crystallographic lattice; Bravais flock; Crystal lattices
¦ noun the symmetrical three-dimensional arrangement of atoms inside a crystal.

Βικιπαίδεια

Semilattice

In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.

Semilattices can also be defined algebraically: join and meet are associative, commutative, idempotent binary operations, and any such operation induces a partial order (and the respective inverse order) such that the result of the operation for any two elements is the least upper bound (or greatest lower bound) of the elements with respect to this partial order.

A lattice is a partially ordered set that is both a meet- and join-semilattice with respect to the same partial order. Algebraically, a lattice is a set with two associative, commutative idempotent binary operations linked by corresponding absorption laws.